博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
拓扑排序的模板实现
阅读量:5265 次
发布时间:2019-06-14

本文共 3789 字,大约阅读时间需要 12 分钟。

蒟蒻的咱又来写辣鸡模板啦!

今天我们写一写拓扑排序的模板(我居然还是现学的=-=,还学了两个小时,我太弱啦!)

拓扑排序是要解决这样一种问题:

 

定义和前置条件:

 

定义:将有向图中的顶点以线性方式进行排序。即对于任何连接自顶点u到顶点v的有向边uv,在最后的排序结果中,顶点u总是在顶点v的前面。

 

 

 

如果这个概念还略显抽象的话,那么不妨考虑一个非常非常经典的例子——选课。我想任何看过相关书籍的同学都知道它吧。假设我非常想学习一门的课程,但是在修这么课程之前,我们必须要学习一些基础课程,比如计算机科学概论,C语言程序设计,数据结构,等等。那么这个制定选修课程顺序的过程,实际上就是一个拓扑排序的过程,每门课程相当于有向图中的一个顶点,而连接顶点之间的有向边就是课程学习的先后关系。只不过这个过程不是那么复杂,从而很自然的在我们的大脑中完成了。将这个过程以算法的形式描述出来的结果,就是拓扑排序。

 

 

 

那么是不是所有的有向图都能够被拓扑排序呢?显然不是。继续考虑上面的例子,如果告诉你在选修计算机科学概论这门课之前需要你先学习机器学习,你是不是会被弄糊涂?在这种情况下,就无法进行拓扑排序,因为它中间存在互相依赖的关系,从而无法确定谁先谁后。在有向图中,这种情况被描述为存在环路。因此,一个有向图能被拓扑排序的充要条件就是它是一个有向无环图(DAGDirected Acyclic Graph)

 

 

 

 

偏序/全序关系:

 

偏序和全序实际上是离散数学中的概念。

 

这里不打算说太多形式化的定义,形式化的定义教科书上或者上面给的链接中就说的很详细。

 

 

 

还是以上面选课的例子来描述这两个概念。假设我们在学习完了算法这门课后,可以选修机器学习或者计算机图形学。这个或者表示,学习机器学习和计算机图形学这两门课之间没有特定的先后顺序。因此,在我们所有可以选择的课程中,任意两门课程之间的关系要么是确定的(即拥有先后关系),要么是不确定的(即没有先后关系),绝对不存在互相矛盾的关系(即环路)以上就是偏序的意义,抽象而言,有向图中两个顶点之间不存在环路,至于连通与否,是无所谓的。所以,有向无环图必然是满足偏序关系的。

 

 

 

理解了偏序的概念,那么全序就好办了。所谓全序,就是在偏序的基础之上,有向无环图中的任意一对顶点还需要有明确的关系(反映在图中,就是单向连通的关系,注意不能双向连通,那就成环了)可见,全序就是偏序的一种特殊情况。回到我们的选课例子中,如果机器学习需要在学习了计算机图形学之后才能学习(可能学的是图形学领域相关的机器学习算法……),那么它们之间也就存在了确定的先后顺序,原本的偏序关系就变成了全序关系。

 

 

 

实际上,很多地方都存在偏序和全序的概念。

 

比如对若干互不相等的整数进行排序,最后总是能够得到唯一的排序结果(从小到大,下同)。这个结论应该不会有人表示疑问吧:)但是如果我们以偏序/全序的角度来考虑一下这个再自然不过的问题,可能就会有别的体会了。

 

 

 

那么如何用偏序/全序来解释排序结果的唯一性呢?

 

我们知道不同整数之间的大小关系是确定的,即1总是小于4的,不会有人说1大于或者等于4吧。这就是说,这个序列是满足全序关系的。而对于拥有全序关系的结构(如拥有不同整数的数组),在其线性化(排序)之后的结果必然是唯一的。对于排序的算法,我们评价指标之一是看该排序算法是否稳定,即值相同的元素的排序结果是否和出现的顺序一致。比如,我们说快速排序是不稳定的,这是因为最后的快排结果中相同元素的出现顺序和排序前不一致了。如果用偏序的概念可以这样解释这一现象:相同值的元素之间的关系是无法确定的。因此它们在最终的结果中的出现顺序可以是任意的。而对于诸如插入排序这种稳定性排序,它们对于值相同的元素,还有一个潜在的比较方式,即比较它们的出现顺序,出现靠前的元素大于出现后出现的元素。因此通过这一潜在的比较,将偏序关系转换为了全序关系,从而保证了结果的唯一性。

 

 

 

拓展到拓扑排序中,结果具有唯一性的条件也是其所有顶点之间都具有全序关系。如果没有这一层全序关系,那么拓扑排序的结果也就不是唯一的了。在后面会谈到,如果拓扑排序的结果唯一,那么该拓扑排序的结果同时也代表了一条哈密顿路径。

——引自博客http://blog.csdn.net/dm_vincent/article/details/7714519

 

当然这并不是我们这篇博客要讨论的重点!(当然本蒟蒻其实也对定义一知半解orz)

我们的重点是如何实现!

考虑这样一道裸题:

确定比赛名次

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 10536    Accepted Submission(s): 4120

Problem Description
有 N个比赛队(1<=N<=500),编号依次为1,2,3,。。。。,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排 名,但现在裁判委员会不能直接获得每个队的比赛成绩,只知道每场比赛的结果,即P1赢P2,用P1,P2表示,排名时P1在P2之前。现在请你编程序确定 排名。
Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示队伍的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即P1队赢了P2队。
Output
给出一个符合要求的排名。输出时队伍号之间有空格,最后一名后面没有空格。
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
Sample Input
4 3 1 2 2 3 4 3
Sample Output
1 2 4 3

【题目来源】

   连我这个蒟蒻都觉得     这道题实在太裸了啊喂

   数据甚至都一定合法

   我们加入这样一个条件 如果不能排序 输出-1

   就可以用下面的这一份代码实现啦!

   这里seq数组存储拓扑排序后的序列 并且显然可以看出 如果有某一个点没有访问过 那么必然是出现了无法排序的情况

   利用stl队列实现:

#pragma GCC optimize("O2")#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define N 100001typedef long long ll;const int inf=0x3fffffff;const int maxn=2017;using namespace std;inline int read(){ int f=1,x=0;char ch=getchar(); while(ch>'9'|ch<'0') { if(ch=='-') f=-1; ch=getchar(); } while(ch<='9'&&ch>='0') { x=(x<<3)+(x<<1)+ch-'0'; ch=getchar(); } return f*x;}struct tsdl{ int to,next;}edge[4*N];int head[N],in[N],tot;void add(int ui,int vi){ edge[++tot].next=head[ui]; edge[tot].to=vi; head[ui]=tot;}queue
q;int seq[N],vis[N],top,cnt;bool topo(){ while(!q.empty()) { int x=q.front(); q.pop(); seq[++top]=x,vis[x]=1; for(int i=head[x];i!=-1;i=edge[i].next) { int v=edge[i].to; in[v]--; if(in[v]==0) { q.push(v); } } } return 0;}int main(){ memset(head,-1,sizeof(head)); int n=read(),m=read(); for(int i=1;i<=m;i++) { int a=read(),b=read(); add(b,a); in[a]++; } for(int i=1;i<=n;i++) if(!in[i]) q.push(i); for(int i=1;i<=n;i++) if(!vis[i]) { cout<<-1; return 0; } for(int i=n;i>=1;i--) cout<
<

 

转载于:https://www.cnblogs.com/tsunderehome/p/7493553.html

你可能感兴趣的文章
平台维护流程
查看>>
SQL (FMDB)
查看>>
2012暑期川西旅游之总结
查看>>
Linux发行版的排行
查看>>
宾得镜头大全与发展史
查看>>
spread+wackamole打造全新高可用+负载均衡
查看>>
Xcode 快捷键及代码格式化
查看>>
12010 解密QQ号(队列)
查看>>
Docker简明教程(以安装wget程序为例)
查看>>
2014年辛星完全解读Javascript第一节
查看>>
装配SpringBean(一)--依赖注入
查看>>
daydayup2 codeforces143C
查看>>
ANT打包J2EE项目war包
查看>>
UESTC-我要长高 DP优化
查看>>
java选择文件时提供图像缩略图[转]
查看>>
当DIV内出现滚动条,fixed实效怎么办?
查看>>
方维分享系统二次开发, 给评论、主题、回复、活动 加审核的功能
查看>>
Matlab parfor-loop并行运算
查看>>
Oracle HRMS API's
查看>>
mysql_real_escape_string() vs addslashes() vs addcslashes()
查看>>